30 research outputs found

    Smartphone Sensor-Based Activity Recognition by Using Machine Learning and Deep Learning Algorithms

    Get PDF
    Article originally published International Journal of Machine Learning and ComputingSmartphones are widely used today, and it becomes possible to detect the user's environmental changes by using the smartphone sensors, as demonstrated in this paper where we propose a method to identify human activities with reasonably high accuracy by using smartphone sensor data. First, the raw smartphone sensor data are collected from two categories of human activity: motion-based, e.g., walking and running; and phone movement-based, e.g., left-right, up-down, clockwise and counterclockwise movement. Firstly, two types of features extraction are designed from the raw sensor data, and activity recognition is analyzed using machine learning classification models based on these features. Secondly, the activity recognition performance is analyzed through the Convolutional Neural Network (CNN) model using only the raw data. Our experiments show substantial improvement in the result with the addition of features and the use of CNN model based on smartphone sensor data with judicious learning techniques and good feature designs

    Comparison of feature selection and classification for MALDI-MS data

    Get PDF
    INTRODUCTION: In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. RESULTS: We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. CONCLUSION: Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study

    Gene selection and classification for cancer microarray data based on machine learning and similarity measures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray data have a high dimension of variables and a small sample size. In microarray data analyses, two important issues are how to choose genes, which provide reliable and good prediction for disease status, and how to determine the final gene set that is best for classification. Associations among genetic markers mean one can exploit information redundancy to potentially reduce classification cost in terms of time and money.</p> <p>Results</p> <p>To deal with redundant information and improve classification, we propose a gene selection method, Recursive Feature Addition, which combines supervised learning and statistical similarity measures. To determine the final optimal gene set for prediction and classification, we propose an algorithm, Lagging Prediction Peephole Optimization. By using six benchmark microarray gene expression data sets, we compared Recursive Feature Addition with recently developed gene selection methods: Support Vector Machine Recursive Feature Elimination, Leave-One-Out Calculation Sequential Forward Selection and several others.</p> <p>Conclusions</p> <p>On average, with the use of popular learning machines including Nearest Mean Scaled Classifier, Support Vector Machine, Naive Bayes Classifier and Random Forest, Recursive Feature Addition outperformed other methods. Our studies also showed that Lagging Prediction Peephole Optimization is superior to random strategy; Recursive Feature Addition with Lagging Prediction Peephole Optimization obtained better testing accuracies than the gene selection method varSelRF.</p

    Multi-slot Channel Allocation for Priority Packet Transmission in the GPRS network

    Full text link
    In the General Packet Radio Service (GPRS) network, data packets from services like mobility management and ldquopush-to-talkrdquo (PTT) are sensitive to delay. During the channel allocation process, the delay-sensitive packets should have higher priority than other packets. Previously priority queue and Uplink State Flag Channel Allocation (USFCA) have been used to reduce the transmission delay of priority packets. In this paper, we study the performance of channel allocation for priority packet in the GPRS network with multi-slot capability. The results show that the transmission delay of priority packet can be further reduced by assigning multiple channels to priority packet in addition to the use of priority queue and USFCA

    Merging Permission and API Features For Android Malware Detection

    No full text
    The prosperity of mobile devices have been rapidly and drastically reforming the use pattern and of user habits with computing devices. Android, the most popular mobile operating system, has a privilege-separated security system through a sophisticated permission control mechanism. Android Apps need to request permissions to access sensitive personal data and system resources, but empirical studies have found that various types of malicious software could obtain permissions and attack systems and applications by deceiving users and the security mechanism. In this paper, we propose a novel machine learning approach to detect malware by mining the patterns of Permissions and API Function Calls acquired and used by Android Apps. Based on static analysis of source code and resource files of Android Apps, binary and numerical features are extracted for qualitative and quantitative evaluation. Feature selection methods are applied to reduce the feature dimension and enhance the efficiency. Different machine learning methods, including Support Vector Machines, Random Forest and Neural Networks, are applied and compared in classification. The experimental results show that the proposed approach delivers accurate detection of Android malware. We deem that the proposed approach could help raise users\u27 awareness of potential risks and mitigate malware threats for Android devices

    Exposing Inpainting Forgery In JPEG Images Under Recompression Attacks

    No full text
    © 2016 IEEE. Inpainting, originally designed in computer vision to reconstruct lost or deteriorated parts of images and videos, has been used for image tampering, including region filling and object removal to alter the truth. While several types of tampering including copy-move and seam carving forgery can now be successfully exposed in image forensics, there has been very little study to tackle inpainting forgery in JPEG images, the detection of which is extremely challenging due to the postrecompression attacks performed to cover or compromise original inpainting traces. To date, there is no effective way to detect inpainting image forgery under combined recompression attacks. To fill such a gap in image forensics and reveal inpainting forgery from the post-recompression attacks in JPEG images, we propose in this paper an approach that begins with large feature mining in discrete transform domain, ensemble learning is then applied to deal with the high feature dimensionality and to prevent the overfitting that generally happens to some regular classifiers under high feature dimensions. Our study shows the proposed approach effectively exposes inpainting forgery under post recompression attacks; especially, it noticeably improves the detection accuracy while the recompression quality is lower than the original JPEG image quality, and thus bridges a gap in image forgery detection

    A Novel Touchscreen-Based Authentication Scheme Using Static and Dynamic Hand Biometrics

    No full text
    With the booming of smart phone and high-speed wireless networks in recent years, applications and data have been shifting from desktop to mobile devices at a vigorous pace. Although mobile computing provides great convenience in daily life, it becomes vulnerable to various types of emerging attacks. User authentication plays an indispensable role in protecting computer systems and applications, but the development of touch screen hardware and user habit change post requirements for new authentication methods for mobile and tablets devices. In this paper, we present a robust user authentication scheme using both static and dynamic features of touch gestures. We take advantage of the pressure sensitivity of multi-touch screens to obtain irreproducible biometric patterns. Discriminative features such as distance, angle, and pressure are extracted from the touch-point data, and used in statistical analysis for verification. We tested our scheme in a variety of experiments that involved multiple volunteers to perform various gestures. The analysis of experimental results and user feedback indicate the proposed scheme delivers comprehensive measurements and accurate pattern classification for touch gestures. Based on these results, we conclude that the proposed scheme overcomes the limitations of the existing user authentication methods, and shows great potential to provide robust protection against unauthorized access
    corecore